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Summary 
A mixing-reaction model 'MIRE-CSTR is developed to describe the selectivity 

behaviour of mixing-disguised reactions in continuous stirred tank reactors (CSTR). 
For competitive, consecutive reactions the general behaviour is demonstrated and a 
comparison with the behaviour in discontinuous operation is made. Furthermore, 
the start-up process of the CSTR is discussed with the help of a model similar to the 
model 'MIRE-CSTR. 

1. Introduction. - In order to carry out a chemical reaction, the reacting species 
must first be mixed together. A coarse grained distribution of the liquid zones is 
achieved by convection (macromixing), and the equalisation of the concentrations 
on the molecular scale is achieved by molecular diffusion (micromixing). 

During kinetic investigations of a chemical transformation the mixing process 
must be considered, if the characteristic times of these processes are of the same 
order or if the mixing time is greater than the characteristic time of the actual 
chemical reaction (reorganisation of the chemical bonds). 

Several models have been developed to describe the coupling between the 
mixing-process and the chemical reaction3). One of these is the mixing-reaction 
model MIRE [3-61, developed from a more general diffusion-immobilization theory 
[7] [8]. The MIRE-model has been previously applied to describe discontinuous 
reactions. Here, it will be developed to describe the behaviour of mixing-disguised 
reactions in a continuous stirred tank reactor (CSTR) in steady-state. In this type of 
operation the reactants A and B flow continuously into the reactor, and the products 
R and S as well as those reactants which have not reacted flow continuously out of 
the reactor. 

I )  

2 ,  

3 ,  

Part V l I I  and 9th Communication c j  [I]. 
Results taken from the Ph. D. thesis of H .  Belevi [2]. 
A summary of these models is given in 191. 
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2. Diffusion-Reaction Model MIRE-CSTR. - Here, the mixing-reaction model 
MIRE-CSTR will be developed for the competitive, consecutive reactions (Scheme). 

Scheme 

A+BA+R 

During the addition of a solution of the species A and a solution of the species B 
to a stirred solution in the reactor, eddies rich in A and B are created in the stirred 
solution. By the theory of turbulence [lo] one can estimate the minimum mean size 
of the eddies from the size of the Kohogoroffvelocity microscale I,. 

If the assumption can be made that the macromixing is much faster than micro- 
mixing [ l l ] ,  the concentration gradient between the surface of the eddies and the 
surrounding solution can be neglected. Consequently, the concentrations at the 
interface of the eddies correspond to those in the surrounding solution at any time. 

In order to make the simulation of the mixing-reaction process by numerical 
computation simpler4), the reactant B is considered to be immobile and the reactant 
A as well as the products R and S are considered to be mobile. While the species B 
is fixed in the B-eddy’), the species A, R and S can diffuse within the eddies as well 
as through the interface. 

In general, the molar feed rates of the solutions A and B are so chosen, that the 
species B is not in excess. Assuming that, up to 100% conversion of €3, the B-eddies 
remain spherical with a constant radius6), the species B exists neither in the 
surrounding solution nor in the A-eddy. 

Since the species B is assumed to be immobilized in the B-eddy, the model 
restricts itself to the diffusion-reaction process in the B-eddy. 

The unsteady character of the diffusion-reaction process and the steady 
character of the CSTR require a discretisation of the continuous operation. 
Therefore, the continuous operation is discretised into time-intervals sE, whereby 
zE represents the time, which passes from the formation to the disappearance of the 
B-eddy. The time t in this conception is then a measure of the age of an eddy since 
its formation. 

In a time-interval 7E diffusion and reaction proceed discontinuously (batch wise). 
This conception requires some additional assumptions (Fig. 1). 
- Before the addition of the feed solutions (state I) ,  only the species A, R and S exist 
in the reactor, because of the complete conversion of species B in the previous 
discretization interval. 

4, 

5 ,  

6 ,  

This simplification reduces substantially the time for computer calculations without falsifying the 
general qualitative conclusions about mixing effects in fast reactions. 
The B-eddy and the A-eddy are eddies, which at the start of the diffusion-reaction process only 
consist of species B and species A, respectively. 
Calculations have shown that linear, cylindrical or time-dependent geometries give other results. 
Because of the higher surface-to-volume ratio, every other geometry of the eddy having the same 
volume shows a lower disguising effect of diffusion on the selectivity. However, the general 
behaviour is the same. A comprehensive discussion is in preparation. 
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[A], 1 PI,, [SI, 

from last discretisation 

[A],, PIx, [SI, ytate I 

state I V 

and instantaneous balance of [R] and [S] 
in the A-eddy 

Addition of the volumes V x .  SE 
and V;t. rE of the solutions A and B into 
the reactor (t= 0) 

diffusion-reaction process 

I 7  
state I I I  

t 
Fig. I .  Discretisation of the continous operation 
(::::I newly entered solutions of A and B) 

- After the addition of the solutions A and B (t= 0), the concentrations of R and S 
in the A-eddy are reached instantaneously (stare iI). 
- The diffusion-reaction process occurs only in the B-eddy, into which the species A 
diffuses and reacts to R and S. Furthermore, the species A also diffuses out of the 
A-eddy keeping the concentration of A in the surrounding solution constant 
([A]= [A],). After 100% conversion of B (state iii), the concentrations of A, R and S 
at any point in the reactor are homogeneous and [B], = 0. The concentrations of R 
and S are greater than at the start of the diffusion-reaction process. This difference 
corresponds to the amount, which flows out of the reactor during the time r E  in 
continuous operation7). 
- Finally, a volume V" . r E ,  which corresponds to the feed volume flows instan- 
taneously out of the reactor leading to state ZV, which corresponds to state i of the 
next discretization interval. 

') The unsteady concentrations of R and S in this representation result from the discretisation. 
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3. Mathematical Description of the Mixing-Reaction-Process. - Equation 1 
describes the change of the molar concentration of the component i with respect to 
time at any point r ( I 17). 

One obtains this equation with the help of a material balance for all the species 
under the following restrictions [3]: 
- Isothermal system 
- Incompressible liquid 
- Dilute solutions 
- Spherical eddy of constant size 

For the species B, which is assumed to be immobile, the diffusivity DB is 0. 
Replacing the molar rate of production by chemical reaction ri by the 

corresponding lunetic equations, one obtains the following diffusion-reaction 
equations: 

__ a PI = D  (% + =)+kl [A][B]-k2[R][B] 
at ar2 r a r  (3) 

For simplicity, the diffusing species are now considered to have a common 
diffusivity D. 

One boundary condition for each partial differential equation results from the 
fact, that no concentration gradient arises at the center of the eddy owing to the 
symmetry of the sphere. 

The concentration of the species A at the surface of the eddy is constant during 
the time zE. Thus a further boundary condition results for the species A: 

r=X: [A]=[A], (7 1 

The boundary conditions for R and S ensue from the requirement, that the 
change of the amount of dissolved species R and S in the surrounding solution 
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(A-eddy included) has to correspond to the flux of R and S, which diffuses through 
the surface of the B-eddy: 

The initial conditions (t = 0) result from the state of the mixture immediately 
after the complete segregation at the beginning of the time-interval SE (Fig. I}. 

4. Procedure for Numerical Solution. - For the complete description of the 
diffusion-reaction process 2-11 the parameters [A],, [R],, [S], and a must be 
calculated. [R], and [S], are given by the equations 12 and 13, which result from the 
mass balances as a function of [A], (see Appendix). 

The ratio a of the surrounding solution volume (A-eddy included) to the B-eddy 
volume is given by the following relation: 

v, - v, - z (VZ+ v;>- v, a =  - 
VR VB 

Furthermore, V, = xE . Vg (see Appendix). Introducing this into equ. 14 leads to: 

T 
(15) a =  - ( I+a , ) - l=y( l+a , ) - l  

ZE 

a can be calculated by estimating y .  As it is assumed that z))zE, y is very large. 
The calculations have shown, that the product distribution remains constant for 
values of y which are greater than 10. 

The product distribution X, in the product stream is given by the following 
relation: 
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Xs follows from the solution of the diffusion-reaction-equations 2-5, as well as from 
the equation 17 which results from the mass balances (see Appendix). 

[A], x,= 2 -  2 E  ' a,+ 2 E  (1 +a,) ~ 

[A10 

The requirement, that the product distribution X, calculated by the both methods 
has to be equal, enables an iterativ solution. 

The diffusion-reaction equations can not be solved analytically. Therefore, a 
computer program was written in FORTRAN, whereby, for the solution of the 
partial differential equations, the subroutines of the simulation package FORSIM-V 
were used [2]. The calculations were carried out on a CDC computer. 

5. Calculation of the Concentration of B in the Product Stream. - Although the 
model MIRE-CSTR assumes that [B],=O, a part of the eddies leave the CSTR 
during the time-interval zE. Since the diffusion-reaction process has not expired 
then, there is a certain concentration of species B in the product stream. 

The part 6 of the eddies which have a residence time smaller than sE can be 
calculated by the relation 18 [ 121. 

a= 1 -exp (- :)= 1 - exp (- +) 
The concentration of B in the product stream is given by the ratio of the quantity 
of species B to the volume of solution, which leaves the reactor during 7E. 

Thus, the conversion of B can be calculated by the equation 20. 

6. Results. - For steady operation of a CSTR with given initial and boundary 
conditions, the product distribution Xs is a function of E ,  a,, (pi ,1,  qi ,2  and y. (pg,, 

and qg are mixing moduli, given by the relations 21 and 22. 

These expressions correspond to the DurnkShler-Number [13], to the square of 
'Thiele-Modulus' [ 141 and to the 'Hum-Number' [ 151 respectively, and are 
proportional to the ratio of the relaxation times of diffusion and chemical reaction. 
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1.0 

t 
x s  

0.5 

0 
0.1 1 10 100 1000 

Fig.2. Model calculations with MIRE-CSTR: Xs as a function of q B . 2  for different (a-1) selectivities 
(PB,1/&2 

E =  1; a,= 1; y =  100; 1 (a); 2 (b); 5 (c); 10 (d); 100 ( e ) ;  1000 (0. 

The selectivity behaviour of mixing-disguised competitive, consecutive reactions 
in a CSTR are shown in Figures 2-4 and in Tables 1-5. 

Figure 2 shows the influence of the mixing moduli (pg,, and 'pi 2. With an 
increase of the effect of mixing increases and the product distribution Xs 
becomes greater. When (pi,* approaches infinity, only the product S arises and Xs 
becomes 1. On the other hand, Xs tends to the reaction controlled value for very 
small values of ~ 0 2 8 , ~ .  With increasing values of the ratio q~i,~/(p;.~ the product 

1.0 

0.5 

0 
0.1 1 1 0  100 1000 

Fig.3. Model calculations with MIRE-CSTR: Xs as a function for different values of a ,  
E = l :  g ~ $ , I / c p $ , ~ =  100; y =  100. 
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Table 1. Model calculations wiih MIRE-CSTR: X ,  as a funciion oJ&, for  different selectivities 
(P:, 1/~i,2 (RC: reaction-controlled) 
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E Y 

2 
(PB, I 

~ 

(Pi,,  
4 . 2  

100 

100 

5 

10 

1 1 100 100 

1 1 100 1 RC 
1 

10 
100 

1000 
1 I 100 2 RC 

1 
10 

100 
1000 
RC 

1 
10 

100 
1000 
RC 

1 
10 

100 
1000 
RC 

0.1 
1 

10 
100 

1000 
I I 100 1000 RC 

0.1 
1 

10 
100 

1000 

XS 

0.764 
0.77 1 
0.800 
0.869 
0.950 
0.667 
0.675 
0.737 
0.837 
0.942 
0.528 
0.555 
0.657 
0.805 
0.930 
0.425 
0.470 
0.610 
0.789 
0.922 
0,174 
0.197 
0.306 
0.536 
0.756 
0.918 
0.060 
0.118 
0.271 
0.617 
0.750 
0.915 

distribution Xs decreases. The greater the value of the less the ratio (P:,,/(P;,~ 

will affect X,. 
Nabholz et al. established the same effects for discontinuous operation [4]. A 

comparison of these results with the values in Figure 2 shows, that the values of Xs 
in a CSTR are generally larger than those in a batch reactor. The more one moves 
from the reaction controlled regime to the diffusion controlled regime, the smaller 
will be this difference. More detailed comparison between discontinuous and 
continuous operation is given in [9]. 

For a constant ratio of feed concentrations E ,  the product distribution Xs 
decreases with increasing ratio of the volumetric feed rates a, (Fig. 3). Furthermore, 
the product distribution increases with decreasing values of E for a given value of 
a,  (Fig. 4). For the constant stoichiometric ratio of the reactant solutions E . a,  the 
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1.0 

0.5 

0 
0.1 1 10 100 1000 
Fig.4. Model calculations with MIRE-CSTR: X ,  as afunction of cpi,2for d#erenr values ofE 

uz= 1; (p;,,/(p;.2= loo; y =  loo. 

mixing effect increases with increasing values of a,, and Xs becomes greater 
(Table 4). y-values, which are greater than a characteristic value, have no 
appreciable influence on the product distribution. For E =  1, a,= 1 and q & / ( ~ ; , ~  
= 100, this value is at y = 10 (Table 5). 

Table 6 shows the dependence of the concentration of B in the product stream 
and of the conversion of B in the reactor on y ,  for a parameter set E ,  a,, qg,, and 

0.6 

0.4 

0.2 

0 
0 10 20 30 4 0  

Fig.5. Model calculations with MIRE-IND for the stari-up process: X.y as a funclion of T P  ( D / R 2 )  
E = l ; ~ , = l ; ( p ~ , ~ = 1 0 0 0 ; ( p ~  9.2- - lO;y=lO. 
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Table 2. Model calculations with MIRE-CSTR: Xs as a function of different values of a ,  
(RC: reaction-controlled) 

E Y 
2 

' PB ,  I -~ 

4 4 . 2  
2 

q B . 2  XS 

1 1 100 100 RC 
0.1 
1 

10 
100 

1000 
1 2 100 100 RC 

0.1 
1 

10 
100 

1000 
RC 

0.1 
1 

10 
100 

1000 
RC 

0.1 
1 

10 
100 

1000 

1 5 100 100 

1 10 100 100 

0.174 
0.197 
0.306 
0.536 
0.756 
0.918 
0.0 19 
0.032 
0.095 
0.320 
0.590 
0.820 
0.005 
0.013 
0.048 
0.220 
0.480 
0.750 
0.002 
0.007 
0.038 
0.190 
0.452 
0.715 

Table 3. Model calcularions with MIRE-CSTR: X ,  as a function of (pi,* for  different values of E 
(RC: reaction-controlled) 

E Y 'PLB.2 XS 

1 1 100 100 RC 
0.1 
1 

10 
100 

1000 
2 1 100 100 RC 

0.1 
1 

10 
100 

1000 
RC 

0.1 
1 

10 
100 

I000 

5 1 100 100 

0.174 
0.197 
0.306 
0.536 
0.756 
0.918 
0.019 
0.030 
0.082 
0.290 
0.550 
0.790 
0.005 
0.010 
0.032 
0.153 
0.395 
0.661 
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Table 3 (continued) 
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E Y 
( P i , ,  

2 
9 ~ , 2  

XS 

10 I 100 I00 RC 0.002 
0. I 0.008 
1 0.0 19 

10 0.098 
100 0.315 

1000 0.563 

~ 2 8 , ~ .  From y =  10 on, the concentration of B in the product stream is very small. In 
practice, y in a CSTR is mostly much higher than 10 [9]. Consequently, the 
assumption of complete conversion of B in the reactor is justified. 

A similar model to MIRE-CSTR was developed to describe the start-up of a 
CSTR [2 ] .  Figure 5 represents a start-up process, in which at the beginning the 
solution in the CSTR consists only of the species A. The appropriate values are 
listed in Table 7. 

Table 4. Model calculations with MIRE-CSTR: X ,  as a function of ( ~ 5 , ~  for  different values of a, at 
constant values for  E a, 

(RC: reaction-controlled) 

E 

- 

1 

0.5 

0.2 

Y 

0.5 

1 

2 

5 

100 

100 

100 

100 

100 

__ 9;. I 2 
9 B . 2  

9 k 2  

100 RC 
0.1 
1 

10 
100 

1000 
RC 

0.1 
1 

10 
100 

1000 
RC 

0. I 
1 

10 
100 

1000 
RC 

0.1 
I 

10 
100 

1000 

100 

100 

XS 

0.174 
0.197 
0.303 
0.527 
0.740 
0.897 
0.174 
0.197 
0.306 
0.536 
0.756 
0.918 
0.174 
0.198 
0.310 
0.545 
0.774 
0.927 
0.174 
0.198 
0.312 
0.556 
0.797 
0.955 
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Table 5 .  Model calculations with MIRE-CSTR: X ,  as (I function of 'pi,2 for  different values of y 
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E Y 

100 

100 

1 1 1 100 0.1 0.144 
1 0.244 

10 0.490 
100 0.723 

1000 0.878 
1 0.1 0.173 

1 0.278 
10 0.517 

100 0.742 
1000 0.896 

1 0.1 0.188 
1 0.296 

10 0.529 
100 0.749 

1000 0.905 
10 100 0.1 0.193 

1 0.301 
10 0.533 

100 0.754 
1000 0.916 

100 100 0.1 0.197 
1 0.306 

10 0.536 
100 0.756 

1000 0.918 
1 1 1000 100 0.1 0.197 

1 0.306 
10 0.536 

100 0.756 
1000 0.918 

The steady-state was reached when rp=40 R 2 / D .  zp is the process time, which 
elapses since the entry of the first eddy into the reactor. 

By the assumption, that zE is of the same order as R 2 / D ,  zp= 40. 7E. Since in 
the calculations z/zE= 10, the steady state will first be reached after some 4 mean 
residence times. 

7. Conclusions. - The influence of micromixing on the product distribution of 
mixing-disguised reactions in a CSTR has been simulated with the help of a mixing- 
reaction model MIRE-CSTR. The general behaviour of a mixing-disguised 
competitive consecutive reaction in a CSTR is determined for given initial and 
boundary conditions by the five parameters E ,  a,, a:,,, and y .  These 
parameters determine to what extent the intrinsic product distribution will be 
disguised by diffusion. The same general trends regarding the selectivity behaviour 
are evident as for mixing-disguised discontinuous reactions [3] [4]. 

Further investigations will show the conformity of the experimental results 
with the results, which are calculated by MIRE-CSTR. 
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Table 6. Model calculations with MIRE-CSTR: B B , ~  and X, as a function of y 
E =  1; a,= 1; p i , , =  1000 .P$,~= 10 

Y B B , K  XB Y BB,CC XB 
1 0.0560 0.888 20 0.0047 0.990 
2 0.0406 0.919 50 0.0019 0.996 
5 0.0180 0.964 100 0.0010 0.998 

10 0.0092 0.982 1000 0.0001 0.9998 

Table 7. Model calculations with MIRE-IND for the start-up process: X s  as a function of Sp(D/R2) 
E =  I ;  aL= I ;  q&= 1000; (pi,z= 10; y =  10 

TP(D/RZ) *S Tp(D/R2)  xs Tp(D/R2) xs 
0.25 
0.5 I 
0.79 
1.08 
1.38 
1.71 
2.05 
2.41 
2.78 
3.18 
3.59 
4.02 
4.48 
4.95 
5.43 
5.94 
6.46 
7.00 
7.56 

0.171 
0.178 
0.185 
0.193 
0.201 
0.210 
0.219 
0.228 
0.238 
0.249 
0.259 
0.270 
0.281 
0.292 
0.304 
0.315 
0.326 
0.338 
0.348 

8.14 
8.72 
9.32 
9.94 

10.57 
11.21 
11.86 
12.52 
13.19 
13.87 
14.56 
15.25 
15.95 
16.66 
17.37 
18.08 
18.80 
19.53 
20.26 

0.359 
0.369 
0.379 
0.389 
0.399 
0.406 
0.415 
0.422 
0.430 
0.436 
0.443 
0.449 
0.454 
0.459 
0.464 
0.468 
0.472 
0.476 
0.479 

20.99 
21.72 
22.46 
23.20 
23.94 
24.68 
25.42 
26.17 
26.92 
27.66 
28.41 
29.16 
29.92 
30.67 
3 1.42 
32.18 
32.93 
33.68 
34.44 

0.482 
0.485 
0.488 
0.490 
0.492 
0.494 
0.496 
0.497 
0.499 
0.500 
0.501 
0.502 
0.503 
0.504 
0.505 
0.506 
0.506 
0.507 
0.507 

Appendix 

The following mass balances are valid over the CSTR. 

VX[Ab=(VX+VMAl, +[Rl, +[Sl,) 

VE[BIo= (VX+V”,([BI, + [RI, + 2[SI,) 

Combining these equations and assuming [B], = 0 one obtains: 

(23) 

(24) 
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When the steady state in the CSTR has been reached, the amounts of R and S, which arise during 
the diffusion-reaction process, have to equal the amounts of R and S, which flowed during rE out of 
the CSTR. Hence further mass balances follow: 

( v X + V 8 r E [ R l ~  = (vA+ vB)[Rl, - vAIRIO 

(vx+vg) rE[Sb = (vA + v B ) [ s l ~  - vA[s10 

The volume VB of the feed stream B, which flows during T E  into the CSTR, is 

vB=vg ' T E  

The equations 25-29 enable one to represent the concentrations [Rjo and [Sb as functions of [A], . 

List of Symbols 
A 
B 

D, 
BB. x 

E 
1 

kl ,k2  
R 
R 
r 
rl 
S 

"A 
VB 
VK 
v:, 
v; 
XB 
XS 

t 

a 
a2 

Y 
6 
i K  
r 
'E 
TP 

(Pi, b(P2e.2 

Species A, reagent in Scheme 
Species B, reagent in Scheme 
Concentration of B after t +  K normalized with respect to [B]o. 
Diffusivity of i [m2. s-l] 
Ratio of the initial concentration of A and B, [A]o/[B]o 
Species i 
Intrinsic rate constants [dm3. mol-' . s-'1 
Species R, primary reaction product in Scheme 
Radius of spherical eddy [m] 
Radial coordinate within spherical eddy [m] 
Specific reaction rate of substance i [mol . dm-3 s- I ]  
Species S ,  secondary reaction product in Scheme 
Age of B-eddy [s] 
Volume of surrounding solution and A-eddy [m3] 
Volume of B-eddy [m3] 
Total volume of solution in reactor [m3] 
Volumetric flow rate of solution A lm3. s-l] 
Volumetric flow rate of solution B [m3.  s-l] 
Conversion of B 
Measure of product distribution, defined in equ. (16) 
Ratio of volumes in CSTR, VA/VB 
Ratio of volumetric feed rates, VX/V$ 
Ratio of mean residence time to time for diffusion and reaction in the 9-eddy, T / Q  

Fraction of eddies, which have a residence time smaller than rE 
Kolmogoroffvelocity microscale [m] 
Mean residence time in a CSTR [s] 
Time for diffusion and reaction in the B-eddy [s] 
Process time, measured from start-up [s] 
Normalized rate constants, defined in equ. 21 and 22 (= Mixing-Moduli) 

Special Notation 
111 

[ill 
[il, 

Concentration of species i [mol . dm-3] 
Initial concentration of species i [mol . dm-3] 
Concentration of species i in product stream [mol . dm-3] 

14 
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